Stabilization techniques and a posteriori error estimates for the obstacle problem
نویسندگان
چکیده
This work deals with a posteriori error estimates for the obstacle problem. Deriving an estimator on the basis of the variational inequality with respect to the primal variable, an inconsistent one is obtained. To achieve consistency, this problem is treated by a Lagrange formalism, which transfers the variational inequality into a saddle point problem. Different techniques to ensure the stability of the discretization and to solve the discrete problems by iterative solvers are studied and compared. Numerical tests confirm our results of consistent a posteriori error estimation.
منابع مشابه
Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension
In this paper, we study spectral element approximation for a constrained optimal control problem in one dimension. The equivalent a posteriori error estimators are derived for the control, the state and the adjoint state approximation. Such estimators can be used to construct adaptive spectral elements for the control problems.
متن کاملA posteriori $ L^2(L^2)$-error estimates with the new version of streamline diffusion method for the wave equation
In this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. We prove a posteriori $ L^2(L^2)$ and error estimates for this method under minimal regularity hypothesis. Test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.
متن کاملAveraging techniques yield reliable a posteriori finite element error control for obstacle problems
The reliability of frequently applied averaging techniques for a posteriori error control has recently been established for a series of nite element methods in the context of second-order partial diierential equations. This paper establishes related reliable and eecient a posteriori error estimates for the energy-norm error of an obstacle problem on unstructured grids as a model example for var...
متن کاملThe Regularization Method for an Obstacle Problem
We give a relatively complete analysis for the regularization method, which is usually used in solving non-diierentiable minimization problems. The model problem considered in the paper is an obstacle problem. In addition to the usual convergence result and a-priori error estimates, we provide a-posteriori error estimates which are highly desired for practical implementation of the reg-ularizat...
متن کاملResidual type a posteriori error estimates for elliptic obstacle problems
under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In this paper, we give an a posteriori error estimates with constitutive law for some obstacle problem. The error estimator involves some parameter ε appeared in some penalized equation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012